光通信之家·分析|机器视觉技术及行业发展概况

发布时间:2022-09-29 07:20:06 来源:bob官方网页登录 作者:bob线上登录

  机器视觉的本质是为机器植入“眼睛”和“大脑”。为机器植入眼睛,代表着机器视觉利用环境和物体对光的反射来获取及感知信息;为机器植入大脑,意味着机器视觉需要对信息进行智能处理与分析,并应用分析得到的结果来执行相应的活动。

  机器视觉行业的上游包括相机、镜头、光源等硬件及算法软件。相机是包含完整的机器视觉组成功能模块(光源可自带或借用外部光源),能独立完成机器视觉信息处理的全流程,为系统输出有效信息;镜头是机器视觉图像采集部分重要的成像部件,其作用是把被摄物体成像于摄像机内的感光元件上;光源对于机器视觉中的图像采集部分具有重要影响,为场景提供合适的照明,突出目标的图像特征并与背景图像分离;机器视觉算法与软件紧密结合,软件平台是实现机器视觉算法的载体,使机器视觉在处理数据量和实时检测效率性能上不断地突破,匹配工业智能发展的需求。

  机器视觉行业的算法库由OpenCV等开源视觉算法库,和Vision Pro(美国康耐视公司)、Halcon(德国MVTec公司)、VisionWare(凌云光)等第三方商业付费算法库组成。因算法库开发周期长、投入大,业内公司通常基于开源算法库开发自身应用算法,或自主开发与第三方集成并举,较少公司完全自主开发底层算法。为提高效率与降低成本,集成第三方成熟工具包作为辅助开发手段是比较常见的方式。

  机器视觉行业的中游为视觉系统与智能装备。视觉系统包含独立完整的成像单元(光源、镜头、相机)和相应的算法软件,集图像采集、处理与通信功能于一身,可以灵活的进行配置和控制,适应各种复杂的应用,具有多功能、模块化、高可靠性等特点。智能装备以机器视觉的感知能力和分析决策能力为核心,在视觉系统的基础上加入了自动化和智能化的功能,将设计、生产、检测过程集成闭环,可实现多种功能。

  机器视觉行业的下游为各行业集成应用和服务。下游应用行业的发展决定了机器视觉装备及服务的市场需求量,目前下游应用领域以电子制造为主,其次为汽车、医药、印刷包装等领域。下游产业丰富多样,集成服务更加有的放矢,面向应用市场才 能更加蓬勃。

  机器视觉市场包括视觉器件、可配置视觉系统和智能视觉装备三个细分市场。根据某调研机构统计,2015年至2020年,全球机器视觉器件市场以13.83%的复合增长率增长,市场规模至2020年达到107亿美元;2021年至2025年,全球机器视觉器件市场规模将以6.56%的复合增长率增长,至2025年市场规模将达147亿美元。可配置视觉系统与智能视觉装备具备较强的行业属性,归属于各下游应用行业的装备市场,以机器视觉技术赋能于制造装备的智能化,因此暂时没有单独的市场规模数据。

  机器视觉以视觉器件、可配置视觉系统和智能视觉装备等形态服务各产业应用,已经被广泛应用于新型显示、消费电子、印刷包装、新能源等众多行业,成为这些行业必不可少的数字化和智能化变革的支撑。

  新冠疫情改变了工厂的生产模式,加快了制造商对工厂自动化的推进速度,在需求方面,受新冠疫情影响,电子产品、医疗、运输、智能制造等领域对机器视觉的需求量大增,机器视觉产品应用不断拓展。在政策层面,近年来国家持续颁布支持政策以推动制造业向智能化、自动化方向发展,不断引导和支持机器视觉技术的健康发展。2021年,《“十四五”规划》提出要提升制造业的核心竞争力,发展壮大战略性新兴产业,利好机器视觉行业发展。据《2021年中国机器视觉市场报告》中数据显示,2021年,中国机器视觉市场销售额销售额达到163.8亿元,同比增长34.5%。

  2019-2021年,中国机器视觉行业研发投入从14.6亿元增长至31.0亿元,年均复合增长为45.7%。从研发投入占比看,AI驱动的解决方案研发投入最高,2021年,AI驱动的解决方案研发投入占全行业研发投入的比例为21.8%,其次是嵌入式视觉系统。3D解决方案研发投入增长率最快,2019-2021年,3D解决方案方向研发投入从2.3亿元增长至6.5亿元。

  可配置视觉系统成为最大的细分产品市场,质量检测是机器视觉产品最主要的应用市场

  机器视觉产业联盟(CMVU)2021年度企业调查结果,特定应用视觉系统或可配置视觉系统是机器视觉行业最大的细分市场,2021年销售额占比为28.3%。其次是光学元件及镜头。报告显示,质量检验是机器视觉产品最主要的应用市场,2021年销售额占比为36.5%,机器人技术与自动装配、量测、位置识别等应用也比较广泛。各类应用方向中,自动驾驶和导航方向销售额增长最快。

  机器视觉产品的下游应用以制造业为主,非制造业为辅。报告显示,2021年机器视觉应用行业中销售额排名前五的为消费电子、锂电、半导体(含PCB)、电气/电子(半导体除外)和汽车行业。其中,机器视觉在锂电行业的销售额增速较高,年均复合增长率高达110.4%。

  国内机器视觉行业发展呈现将持续稳健增长的趋势,预计未来三年,得益于宏观经济进一步回暖、新基建投资的增加、5G网络建设的加速及产业融合的进一步推进、制造业自动化及智能化进程的加速、机器视觉产品应用领域的拓宽、国产替代加速、政策支持、机器视觉行业技术升级、资本力量不断加持等因素,中国机器视觉行业规模进一步增长。机器视觉行业未来发展趋势包括应用领域持续拓宽、嵌入式视觉应用持续增长、深度学习重要性进一步凸显、单一产品向综合解决方案升级、2D向3D升级等。

  过去十年是中国机器视觉行业快速发展的十年,经过一段时间的普及与推广,机器视觉应用范围逐渐扩大。目前,机器视觉的应用范围已从最初的消费电子等领域,逐步拓展至印刷包装、汽车、运输、医疗等领域。预计未来,除了传统的应用领域外,在AI、自动驾驶、人脸识别等新兴技术兴起的带动下,机器视觉将进一步拓宽应用领域。

  嵌入式视觉系统是指在嵌入式系统中使用机器视觉技术,是嵌入式系统和机器视觉两种技术的整合,可独立完成从接收光信号到系统输出的整个信号处理过程。处理能力、存储器密度和系统集成度的提升,促进了嵌入式视觉在传统和新兴应用领域的渗透。未来,得益于越来越多的行业应用程序的支持,嵌入式视觉将被更广泛地应用在自动驾驶等领域新兴领域。

  3D机器视觉升级相比2D机器视觉,3D机器视觉具有显著优势,例如测量速度快、精度高、抗干扰能力强、操作简便等,能有效解决2D机器视觉对于高度、厚度、体积、平面度等测量因素缺失的问题。3D视觉技术的突破,将进一步推动视觉技术在高端场景的应用,传统的2D机器视觉将快速向3D机器视觉升级,推动机器视觉市场持续增长。

  随着生产工艺的精进及产品质量要求的提高,消费电子等行业对检测精度的要求越发严苛。例如,半导体生产制造已使用5nm工艺,对芯片的检测精度要求也已提升至纳米量级。受限于衍射极限,单纯采用显微放大的方式已经难以满足检测精度需求,导致加工良率难以提高,影响产品质量。因此,急需高精度的机器视觉技术解决更精 准的测量问题,保证加工工艺符合要求,降低封装成本,确保出厂产品质量。

  上述下游应用的发展推动了对机器视觉产品和服务需求的提升,但也对机器视觉厂商提出了更高标准的要求。随着下游应用的生产、加工、检测等环节的效率和品质要求不断提升,机器视觉厂商需要加大技术投入,以提高机器视觉系统的精度、检测效率等参数。

  行业内的新技术的发展为机器视觉厂商推出高品质的产品和服务提供了有力的支持,这也对业内厂商的技术研发能力提出了更高的要求。

  首先,光谱技术推动机器视觉实现目标的多种特征分析。随着机器视觉的快速发展和普及,机器视觉产品已经广泛应用于智慧农业、矿石分选、食品安全等众多产业中。各行业样本的复杂性要求机器视觉不仅需要实现目标的外观检测,也需要实现目标的材料成分、颜色、温度等特征的分析。光谱技术利用光的衍射和折射特性,通过光栅、棱镜等分光元件,在谱域获取有效信号,实现目标高维信息参量获取,并通过相关分析算法将谱域信号与测量需求建立联系,如物质成分、温度、三维面型等,通过对光谱的测量解决复杂多样化的测量需求。

  其次,计算成像技术的提升增强了机器视觉的图像信息获取能力。计算成像技术通过多样化数据采集,并通过特定算法解析,获取到传统成像中难以获取的图像信息,深度挖掘图像中隐含的内部信息,满足更高分辨率、更多维度、更大空间带宽积的光电成像需求。随着新型光电器件的发展和硬件计算能力的提升, 计算成像技术在光电成像领域呈现出蓬勃发展的趋势。

  此外,新型光学元器件的发展驱动了机器视觉性能的提升。机器视觉成像系统由照明光源、成像器件、图像采集器件组成,各类器件的性能升级都会推动机器视觉系统的性能和稳定性提升,从而实现高像质的图像采集。另外,丰富的元器件为提供个性化的图像采集和智能方案奠定了基础。

  机器视觉系统不仅包括光学成像系统,还包括决策系统和执行系统。算力、算法、 传输技术的快速发展也为机器视觉带来了机遇与挑战。

  算力的提升使机器视觉的决策变得更为迅速,基于云平台的信息处理可以提供几乎无限的算力,解决各种复杂运算问题,提升了机器视觉系统的决策速度;分析算法的优化升级也使机器视觉的识别和分类变得更加准确;5G通信技术增加了信号数据通量、降低了信号时延、缓解了信号干扰等问题,使机器视觉在自动驾驶、精密自动控制、智慧工厂等领域中发挥重要作用。该等相关技术的发展提升了机器视觉系统的性能和使用效率,但也对相关硬件厂商的技术研发能力提出了更高的要求。

  中国机器视觉行业起步较晚。国外厂商具有较强的设计、研发和制造能力,视觉系统领域长期由基恩士、康耐视等厂商主导,最早国内厂商主要代理国外厂商的机器视觉产品。随着技术与经验的积累,部分国产厂商开始推出自主品牌的产品,且国内厂商能够提供本地化的定制化服务,供货周期较为灵活,市场份额逐年增长。

  根据中国机器视觉产业联盟统计,中国机器视觉市场的集中度有所下降,销售额排名前五的企业销售额合计占整体销售额的比例从2019年的33.0%下降至2020年的30.1%;销售额排名前十的企业销售额合计占整体销售额的比例从2019年的44.6%下降至2020年的40.3%。在成员企业中,2020年销售额排名前十的企业中,有8家公司的总部位于中国。

  凌云光成立于2002年,聚焦机器视觉业务,已开发出一系列可配置视觉系统和智能视觉设备产品,并自主研发了工业相机、光源等核心器件,在多行业得到广泛应用,服务于苹果、富士康、京东方等多家知名企业。2021年实现营业收入24.36亿元,归母净利润为1.72亿元。2022年7月6日,凌云光(股票代码:688400)在上交所A股科创板正式上市。

  天准科技成立于2005年,总部位于中国苏州,致力于以领先技术推动工业数字化智能化发展,主要产品包括视觉测量装备、视觉检测装备、视觉制程装备和智能网联方案等。2019年7月22日,天准科技在科创板正式挂牌上市(股票代码:688003)。2021年实现营业收入12.65亿元,归属于上市公司股东的净利润为1.34亿元。

  大恒图像成立于1991年,专注于机器视觉部件及视觉系统研发、生产和营销,是A股上市公司大恒科技(股票代码:600288)旗下核心资产。大恒科技产业之一的机器视觉组团(包括中国大恒图像分公司,大恒图像、深圳恒志、 上海昊邦、苏州图锐智能科技、苏州恒视智能科技等子公司,大恒图像子公司下属青岛恒纺、河北天昱恒等子公司及合资公司潍坊天恒)2021年度实现营业收入10.80亿元。

  奥普特(OPT)成立于2006年,定位于自动化核心零部件供应商,现已成为国内机器视觉应用技术领先者,产品包括视觉系统、光源、工业相机、镜头、3D激光传感器、工业读码器等。2020年在上交所科创板上市(股票代码:688686)。2021年实现营业收入8.75亿元,归属于上市公司股东的净利润为3.03亿元。

  宝视纳视觉技术(北京)有限公司成立于2018年,是 Basler集团旗下子公司。Basler创始于德国,是一家跨国的高品质工业相机和计算机视觉解决方案提供商,在欧洲、亚太、中国和北美均设有分支机构,包括生产制造工厂(位于德国和新加坡)、销售公司及联络处。返回搜狐,查看更多

上一篇:机器视觉龙头股获机构密集调研相关产业正步入发展黄金期
下一篇:【机器视觉公司排名】机器视觉领域国内外主流公司一览

相关信息

  • 【机器视觉公司排名】机器视觉领域国内外主流公司一览

    【机器视觉公司排名】机器视觉领域国内外主流公司一览

      机器视觉是一项综合技术,包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术(图像增强和分析算法、图像卡、 I/O卡等)。一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块。  机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。同时,在大批量重复性工业生产过程中,用机器视觉检测方法可以大大提高生产的效率和自动化程度。  近年来,随着我国智慧城市建设的重新火热,机器视觉技术的市场需求量大增。对于人脸识别、图片搜索引擎、医疗诊断、智能驾驶、娱乐营销等智慧城市建设的多个领域来说,机器视觉技术都是不可或缺的。未来3年,我国机器视觉市场将保持高速增长,2020年市场规模有望突破50亿。  从光电传感器和近接传感器到用于检测的测量仪器和研究院专用的高精度设备,KEYENCE的产品覆盖面极其广泛。KEYENCE的客户遍及各行各业,有超过80,000的客户都在使用KEYENCE的这些
  • 中国十大平面设计公司排名

    中国十大平面设计公司排名

      中国十大品牌设计公司评选活动是由中国品牌整合网发起联合业界知名人士共同推出的一项具有重大意义的活动,此项活动将会一直延续下去,每年都将评选,中国品牌整合网将和广大业界人士共同努力,推动中国品牌设计事业的发展。  他们在商业设计领域运营得十分成熟。拥有四家联合机构同时也采纳了商业合伙制度  集和创立了属于他们自己的运营模式,达到了他们所崇尚的那种“积聚力量,和而不同”的理念  近两年来,他们专长于展览策划与设计,在创意总监黑一烊的带领下返回搜狐,查看更多
  • 机器视觉系统培训的详细资料合集免费下载

    机器视觉系统培训的详细资料合集免费下载

      和判断。机器视觉是工程领域和科学领域中的一个非常重要的研究领域,它是一门涉及、模式识别、图像处理、人工智能、信号处理以及光电一体化等多个领域的综合性学科,其能以及应用范围随着工业自动化的发展逐渐完善和推广,其中母子嵌入式技术、图像处理和模式识别等技术的快速发展,有力地推动了机器视觉的发展。  从整个机器视觉的领域来讲,它是处在快速的重构期,通过市场分析来看,机器视觉并不是特别新兴的领域,这从最早图像处理衍生到现在,市场上有很多大的厂商对智能安防和交通做了很久的深耕,他们最开始不是做机器视觉、人脸识别起家的,在这几个行业中很多厂商都处于并驾齐驱、快速发展阶段。  赛迪顾问预测到2018年中国人工智能市场规模会超过406亿,这个复合增长率会达到25.8%,增速是快于全球的整个增长率的。在市场结构上来讲,也是存在着整体的情况。投资规模来讲,在去年一年,从投资的整个额度包括投资笔数都呈快速增加的态势,而且很多从事人工智能和机器视觉的企业数量也在快速地增加。  未来,通过人工智能方面利好的政策,在这四个领域会有比较大的机遇,安防、交通,金融,消费电子这是机器视觉领域重点关注的应用行业方向。 
  • 人工智能机器视觉发展及应用范围介绍

    人工智能机器视觉发展及应用范围介绍

      当前,人工智能已成为新一轮科技革命和产业变革的核心驱动力,其发展势不可挡。随着人工智能的爆发,作为代表技术之一的机器视觉,有望迎来更大发展。  机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。伴随着人工智能产业升温,机器视觉行业有望迈向新的发展阶段,市场规模将加速扩张。  机器视觉系统就是利用机器代替人眼来作各种测量和判断。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。在自动化生产过程中,人们通常将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。  在我国随着配套基础建设的完善,技术、资金的积累,各行各业对采用图像和机器视觉技术的工业自动化、智能需求开始广泛出现,推动着机器视觉行业快速发展。然而,目前全球用户对视觉技术的飞速发展还缺乏匹配认知,行业发展必然面临挑战。  工业机器视觉难点在于精度和速度,要求都在毫米级,且工业领域工业机器人抓手的变动是在三维空间内。  

手机扫一扫添加微信